
OLS/MLR Assessment I: Goodness-of-fit

• Review of SLR Assessment (predicteds v. actuals)

• R-sq shortcoming in MLR models:  Just showing up!

• A Quick Comparison of SLR and MLR Assessment –
Not much that's new!

• MLR Goodness-of-Fit:  Adjusted R-squared

• … and adding and subtracting RHS variables

• Comparing MLR Models I:  Goodness-of-Fit metrics in 
action
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OLS/SLR Assessment Review:  Predicteds v. Actuals

2

• MSE (Mean Squared Error): 
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… an average squared residual, sort of… 

• RMSE (Root Mean Squared Error): RMSE MSE= … sort of an average residual, but more 
like a square root of an average squared residual, sort of… 

• 2R  (Coefficient of Determination): ˆˆ2 2 2
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the variance of the actuals explained by the predicteds, as well as the correlation (squared) 
between the predicteds and the actuals. 

• Usefulness:  The MSE and RMSE metrics are not in standardized units, making it difficult to 
interpret the magnitudes.  But 2R , which ranges from zero to one, is standardized to some 
extent, making it perhaps more useful in assessing the performance of the model: 

2R :  20 1R≤ ≤ … closer to one is better….  closer to zero, not so much 

 



R-sq Shortcoming:  Gives variables credit for just showing up!
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• 2R  gives credit to variables for  just showing up… irrespective of their explanatory power! 

• What drives the result:  Remember that OLS coefficients are always found by minimizing 
SSRs. And so when RHS variables are added to a MLR model, SSRs will typically decrease, 
or at worst, stay the same.  But they can never increase (and 2R  can never decrease) since 
you can't do a poorer job of minimizing SSRs when you have one more RHS variable to 
work with. 

 If the new variable has an OLS/MLR coefficient of zero, then the new variable has added 
nothing (no explanatory content) to the model, and SSRs and 2R  are unchanged. 

 Alternatively, if the new coefficient is non-zero (and uniquely defined) when minimizing 
SSRs, then SSRs will necessarily have decreased, and 2R  increases. 

• What usually happens:  When new explanatory variables are added to a model their 
coefficients will typically be non-zero and 2R  will typically increase.  So no one should be 
impressed if 2R  increases when new RHS variables are added to the MLR analysis… that's 
entirely to be expected. 

 



SLR v. MLR Assessment: Not much that’s new!
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adj R-sq and MSE when changing RHS variables
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• 2 2 1 ( 1)1 1SSR n n SSRadjR R
SST dofs SST dofs

   − − = = − = −        
  

• As you add explanatory variables to the model, only the terms in the square brackets (SSR 
and dofs) are changing, both are typically declining.  2R  will increase or decrease depending 
on the relative rates of change of SSRs and dofs: 

 If the decline in SSRs is faster than the decline in dofs, then SSR
dofs
 
 
 

 will decline and 2R  

will increase with the additional explanatory variables. 

 But if the decline in SSRs is slower than the decline in dofs, then SSR
dofs
 
 
 

 will increase , 

and 2R  will decrease.   

 Adjusted R2 will increase if SSRs are dropping faster than dofs 

 



adj R-sq and MSE when changing RHS variables, cont’d

6

• adj R2 is always bounded above by R2, and by 1:  

 2 2 1R R< ≤  for 0k > , since  ( 1) ( 1) 1
( 1)

n n
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− −
 and so  1SSR n SSR
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S

= − , adjusted R2 and MSE will always move in 

opposite directions when yyS is fixed.   
• Accordingly, the two goodness-of-fit metrics (adjusted R2 and MSE/RMSE)  are effectively 

redundant in the sense that knowing the movements patterns of one tells you the movements 
of the other.   

 



R-sq, adj R-sq and MSE when changing RHS variables, cont’d
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. esttab, r2 ar2 scalar (rmse) compress 
 
-------------------------------------------------------------- 
                 (1)          (2)          (3)          (4)    
              Brozek       Brozek       Brozek       Brozek    
-------------------------------------------------------------- 
hgt           -0.650***    -0.118       -0.131       -0.138    
             (-6.29)      (-1.43)      (-1.51)      (-1.55)    
 
wgt            0.187***    -0.120***    -0.108**     -0.100*   
             (14.48)      (-5.41)      (-3.18)      (-2.52)    
 
abd                         0.880***     0.883***     0.898*** 
                          (15.19)      (15.13)      (12.62)    
 
hip                                    -0.0564      -0.0723    
                                       (-0.49)      (-0.58)    
 
chest                                               -0.0348    
                                                    (-0.38)    
 
_cons          31.16***    -32.66***    -28.64**     -25.86*   
              (4.51)      (-5.01)      (-2.71)      (-2.01)    
-------------------------------------------------------------- 
N                252          252          252          252    
R-sq          0.4614       0.7210       0.7213       0.7215    
adj. R-sq     0.4571       0.7177       0.7168       0.7158    
rmse          5.7109       4.1184       4.1248       4.1320    
-------------------------------------------------------------- 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 

As Advertised!



Choosing the Best Model:  Art & Science
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• Comparing the performance of MLR models is as much art as science  … and in truth, we 
typically look at a number of different aspects/properties of the model.  But certainly adj R-
sq and RMSE are in the conversation.   

• Choosing between models depends in part on the goals of the analysis: 

 Forecasting models (less is more; focus on out-of-sample forecasting, and don’t over-fit 
the data) 

 Behavioral models (parsimony preferred; the challenging art form) 

 Favorite coefficient models (more is more; focus on the favorite coefficient… and don’t 
worry about the other aspects of the model… other than making sure that you really have 
included every possible relevant explanatory variable, and accordingly that you have 
minimized the possibility of omitted variable impact/bias) 



OLS/MLR Assessment I - GOFs: TakeAways
• The SLR Goodness of Fit (GOF) metrics (R-sq, MSE and RMSE) extend to MLR models with the only 

change being that in computing MLR MSEs you now divide SSRs by n-k-1, the degrees of freedom (dofs) in 
the MLR model.

• And the SLR interpretations carry over to MLR models:  R-sq is the proportion of the variation of the LHS 
variable explained by the model, MSE is almost an average squared residual, and RMSE is almost an average 
residual.

• However: R-sq is not so useful in evaluating MLR models, as R-sq will almost always increase as you add 
RHS variables to a model.  Or put differently:  Added RHS variables get R-sq credit just for showing up.

• A new GOF metric, adjusted R-sq, offers a response… and only increases when the new RHS variables have 
some significant explanatory power (in the form of significantly reduced SSRs)

• Adj R-sq increases with the added RHS variables, if the decrease in SSRs is larger than the decrease in dofs.

• MSE and adj R-sq will move in opposite directions so long as n and SST are unchanged.  They are both useful 
in choosing between models… as well, the type/goal of the model (forecasting, behavioral or favorite 
coefficient) will also guide that choice.
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onwards… to OLS/MLR Analytics II
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